![]() |
Quantum Fog
0.9.3
|
Public Member Functions | |
def | __init__ (self, is_quantum, bnet, num_samples, use_int_sts) |
def | sam_generator (self) |
def | write_csv (self, sts_file_path, degs_file_path=None) |
Public Attributes | |
is_quantum | |
bnet | |
num_samples | |
use_int_sts | |
topo_nd_list | |
RandGen_NetParams (Random Generator of Net Parameters). This class generates random parameters (i.e. either a single pot or all pots) for a given bnet structure. The states are sampled the same way in the classical and quantum cases. In the quantum case, if a node C with parents pa(C) has C=x and pa(C)=y, where x and y are the sampled states, then we set the phase of node C equal to the phase of the amplitude A( C=x | pa(C)=y ). Attributes ---------- bnet : BayesNet The pots of this bnet are sampled to generate a states_df and also a degs_df in the quantum case. use_int_sts : bool If False, states_df has state names as entries. If True, states_df has int entries. The int entries are the index in the states_names list of the node for that column. is_quantum : bool True if quantum bnets and False if classical ones num_samples : int The number of samples = len(states_df.index) = len(degs_df.index) topo_nd_list : list[BayesNode] List of the nodes of the bnet in topological (=chronological) order, root node first
def learning.RandGen_NetParams.RandGen_NetParams.__init__ | ( | self, | |
is_quantum, | |||
bnet, | |||
num_samples, | |||
use_int_sts | |||
) |
Constructor Parameters ---------- is_quantum : bool bnet : BayesNet num_samples : int use_int_sts : bool Returns -------
def learning.RandGen_NetParams.RandGen_NetParams.sam_generator | ( | self | ) |
A generator of samples. The generator yields two dictionaries, nd_to_int_st and nd_to_degs. nd_to_int_st maps each node to its sampled state given as an integer (the integer being the index of the state in the node_states list of the node). In the quantum case, nd_to_degs maps each node to its sampled phase in degrees. In the classical case, nd_to_degs = None Returns ------- (dict[int], dict[float])
def learning.RandGen_NetParams.RandGen_NetParams.write_csv | ( | self, | |
sts_file_path, | |||
degs_file_path = None |
|||
) |
Writes a cvs file (comma separated values) for states_df at the path sts_file_path and for degs_df at the path degs_file_path Parameters ---------- sts_file_path : str degs_file_path : str or NoneType Returns -------