![]() |
Quantum Fog
0.9.3
|
Static Public Member Functions | |
def | ent (df, xcols, verbose=False) |
def | cond_info (df, xcols, ycols, verbose=False) |
def | mut_info (df, xcols, ycols, verbose=False) |
def | cond_mut_info (df, xcols, ycols, zcols, verbose=False) |
This class calculates classical (not quantum yet) entropy, conditional information (CI), mutual information (MI) and conditional mutual info ( CMI) from a dataframe (hence, from empirical data, not from the true distributions of a bnet). Error in entropy is ln(n+1) - ln(n) \approx 1/n where n>>1 is the number of samples
|
static |
Returns the conditional information (CI) H(x|y) where x (y, resp.) is given by the list of columns xcols (ycols, resp.) in the dataframe df. Parameters ---------- df : pandas.DataFrame dataframe for which CI is calculated xcols : list[str] list of column names in df. The x in H(x:y) ycols : list[str] list of column names in df. The y in H(x:y) verbose : bool If True, print extra info in console. Returns ------- float
|
static |
Returns the conditional mutual information (CMI) H(x:y|z) where x ( y, z, resp.) is given by the list of columns xcols (ycols, zcols, resp.) in the dataframe df. Parameters ---------- df : pandas.DataFrame dataframe for which CMI is calculated xcols : list[str] list of column names in df. The x in H(x:y|z) ycols : list[str] list of column names in df. The y in H(x:y|z) zcols : list[str] list of column names in df. The z in H(x:y|z) verbose : bool If True, print extra info in console. Returns ------- float
|
static |
Returns the entropy H(x) where x is given by the list of columns xcols in the dataframe df. Parameters ---------- df : pandas.DataFrame dataframe for which entropy is calculated xcols : list[str] list of column names in df. The x in H(x) verbose : bool If True, print extra info in console. Returns ------- float
|
static |
Returns the mutual information (MI) H(x:y) where x (y, resp.) is given by the list of columns xcols (ycols, resp.) in the dataframe df. Parameters ---------- df : pandas.DataFrame dataframe for which MI is calculated xcols : list[str] list of column names in df. The x in H(x:y) ycols : list[str] list of column names in df. The y in H(x:y) verbose : bool If True, print extra info in console. Returns ------- float